

## 1 Features and Benefits

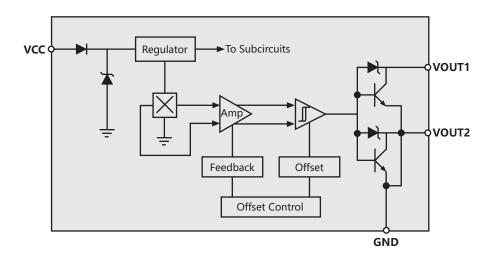
- ▲ Digital output
- ▲ Stable over the entire temperature range
- ▲ Wide operating voltage range: 4.5V ~ 24V
- ▲ Strong resistance to mechanical stress
- ▲ Non-contact output, safety and reliable
- ▲ Directy drive the coils of DC motor (Fan)
- ▲ Immunity to logic race condition
- ▲ Short switch time and good switch sensitivity
- ▲ TO-94 package
- ▲ Developed according to the EU RoHS & REACH

## **2 Application Examples**

- ▲ Automotive electronics, Consumer electronics and Industrial electronics
- ▲ Water flow sensing
- ▲ Electronic steering column lock
- ▲ Door latch system
- ▲ Seat adjustment
- ▲ Speed measurement and tachometer
- ▲ Motor control
- ▲ Brushless DC motor

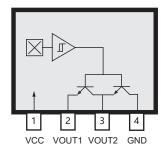
### 3 Selection Guide

| Part Number | Packing                          | Mounting               | Operating, To | B <sub>RP</sub> (Min) | B <sub>OP</sub> (Max) |
|-------------|----------------------------------|------------------------|---------------|-----------------------|-----------------------|
| AH4059      | Anti-static bag, 1000 pieces/bag | 4-pin SIP through hole | –40°C ~ 85°C  | 3.0mT                 | 13.0mT                |


NOTE: Hall ICs are soldered tin brazing for assembly, and wave soldering of SOT-23-3L and SOT-89 surface-mounted components poses a risk of failure.






## **4 General Description**

AH4059 Hall Sensor is a kind of bipolar Hall switch with two complementary outputs. It is particularly suitable for double coil DC motor, double coil DC fan, speed measurement and rotation control. The sensor chip intergrated bandgap reference voltage source, Hall voltage generator, signal amplifier, hysteresis controller, reverse voltage protection diode, and circuit units such as an open-collector output driver with two complementary outputs with a sink current of 300mA. High-performance bandgap reference voltage source ensures consistent sensitivity of the sensor over a wide temperature range. Reverse voltage protection diodes avoid reverse power failures.



#### **5 Terminal List**

TO-94



| Name  | Description        | Number |
|-------|--------------------|--------|
| VCC   | Power Supply Input | 1      |
| GND   | Output 1           | 2      |
| VOUT1 | Output 2           | 3      |
| VOUT2 | Ground             | 4      |



## **6 Absolute Maximum Ratings**

| Characteristic               | Symbol              | Note                                                        | Rating    | Unit |
|------------------------------|---------------------|-------------------------------------------------------------|-----------|------|
| Supply Voltage               | Vcc                 |                                                             | 28        | V    |
| Reverse Supply Voltage       | VROUT               |                                                             | -0.5      | V    |
| Output Current               | OUTSINK             |                                                             | 500       | mA   |
| Magnetic Flux Density        | В                   |                                                             | Unlimited | mT   |
| Operating Temperature        | То                  | E                                                           | -40 ~ 85  | °C   |
| Maximum Junction Temperature | T <sub>J(max)</sub> | Too high a Tj could lead to electrical or thermal breakdown | 165       | °C   |
| Storage Temperature          | T <sub>stg</sub>    |                                                             | -50 ~ 160 | °C   |
| ESD sensitivity – HBM        | -                   |                                                             | 6         | kV   |

NOTE 1. Human Body Model according to AEC-Q100-002 standard.

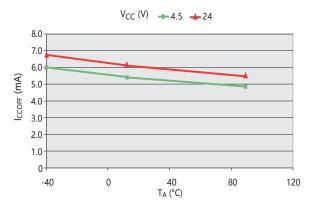
## **7 Electrical Operating Characteristics**

valid through the full operating temperature range; unless otherwise specified

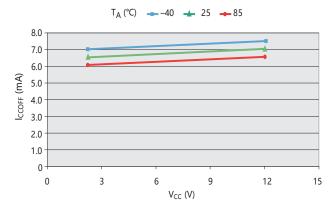
| Characteristic            | Symbol                | Test Conditions                                                                  | Min. | Тур. | Max. | Unit |
|---------------------------|-----------------------|----------------------------------------------------------------------------------|------|------|------|------|
| Supply Voltage            | Vcc                   | Operating, TJ<165°C                                                              | 4.5  | -    | 24   | V    |
| High-level Output Voltage | Voh                   | $V_{\text{CC}}\text{=}24V, \ R_{\text{L}}\text{=}10k\Omega, \ B < B_{\text{RP}}$ | 23.5 | -    | 24   | V    |
| Low-level Output Voltage  | Vol                   | IOUTMAX=25mA, B >BOP                                                             | 0    | -    | 0.5  | V    |
| Supply Current            | Icc                   | Vcc=24V                                                                          | -    | 6.0  | 8.0  | mA   |
| Output leakage Current    | loutoff               | V <sub>OUT</sub> =24V, B <b<sub>RP</b<sub>                                       | -    | -    | 10   | μA   |
| Power-On Time             | <b>t</b> PO           |                                                                                  | -    | -    | 30   | μs   |
| Output-Rise Time          | <b>t</b> <sub>R</sub> | $V_{\text{CC}}$ =12 $V$ , $R_{\text{L}}$ =1.2 $k\Omega$ , C=12 $pF$              | -    | -    | 2    | μs   |
| Output-Fall Time          | t <sub>F</sub>        | Vcc=12V ,RL=1.2kΩ, C=12pF                                                        | -    | -    | 2    | μs   |

NOTE 1. Power-On Time, tPo, is defined as: the time it takes for the output voltage to settle within ±10% of its steady state value under an applied magnetic field, after the power supply has reached its minimum specified operating voltage, Vcc (min).

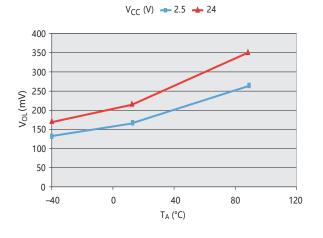
# **8 Magnetic Operating Characteristics**


valid through the full operating temperature range; unless otherwise specified

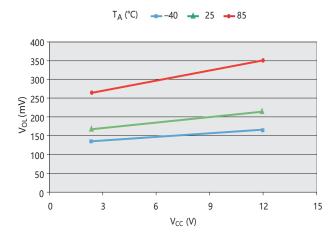
| Characteristic  | Symbol          | Test Conditions                                                                | Min. | Тур. | Max. | Unit |
|-----------------|-----------------|--------------------------------------------------------------------------------|------|------|------|------|
| Operating Point | Вор             | Operating, TJ<165°C                                                            | -    | 4.0  | 13.0 | mT   |
| Release Point   | B <sub>RP</sub> | $V_{\text{CC}}\text{=}24V,R_{\text{L}}\text{=}10k\Omega,\;\;B < B_{\text{RP}}$ | 3.0  | -4.0 | -    | mT   |
| Hysteresis      | Вн              | IOUT=25mA, B > BOP                                                             | -    | 8.0  | -    | mT   |



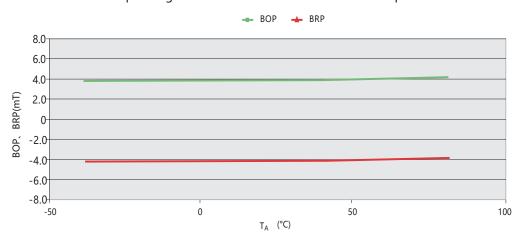

## 9 Characteristic Curves (Type UA)


Supply Current (Off) versus Ambient Temperature




Supply Current (Off) versus Supply Voltage



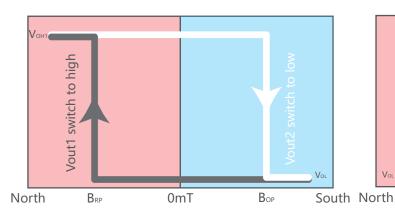

Low-level Output (On) versus Ambient Temperature

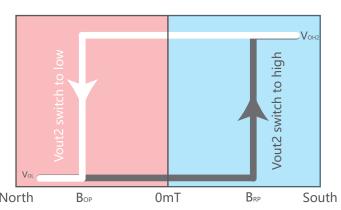


Low-level Output (On) versus Supply Voltage



Operating and Release Point versus Ambient Temperature



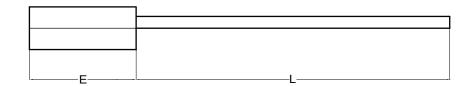

# **10 Magnetic Behavior**

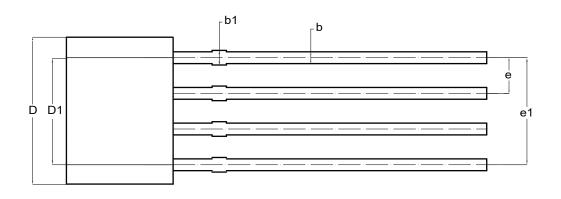
#### **South Pole Active**

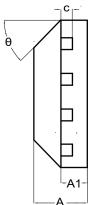
When the "S" pole faces the sensor's mark surface and is closed to it (B  $\geq$  Bop), the terminal V<sub>01</sub> outputs a low level and the terminal V<sub>02</sub> a high level; when the "N"pole faces senosor's mark surface and is closed to it (B  $\leq$  Brp), terminal V<sub>01</sub> outputs a high level and the terminal V<sub>02</sub> a low level. Stable hysteresis (Bh = Bop - Brp) ensures stable switch status. The magnetoelectric conversion characteristics of AH4059 are shown in the figure:






**Bipolar Dual Output** 

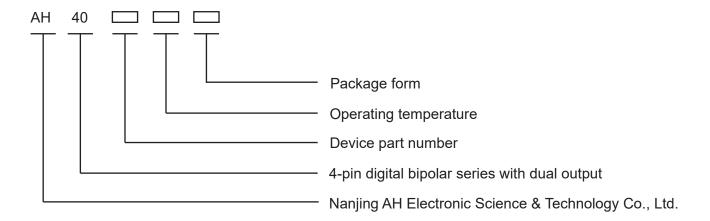



# 11 Package Information

**TO-94** 








| Complete | Dimension (Unit: mm) |        |  |  |
|----------|----------------------|--------|--|--|
| Symbol   | Min.                 | Max.   |  |  |
| Α        | 1.400                | 1.800  |  |  |
| A1       | 0.700                | 0.900  |  |  |
| b        | 0.360                | 0.500  |  |  |
| b1       | 0.380                | 0.550  |  |  |
| С        | 0.360                | 0.510  |  |  |
| D        | 4.980                | 5.280  |  |  |
| D1       | 3.780                | 4.080  |  |  |
| E        | 3.450                | 3.750  |  |  |
| е        | 1.270TYP.            |        |  |  |
| e1       | 3.710                | 3.910  |  |  |
| L        | 14.900               | 15.300 |  |  |
| θ        | 45°TYP.              |        |  |  |



## **12 Marking Information**



Copyright 2003~2020 Nanjing AH Electronic Science & Technology Co., Ltd.

Nanjing AH Electronic Science & Technology Co., reserves the right to improve the performance, reliability or manufacturability of its products at any time according to detailed specifications. Before placing an order, the user is cautioned to verify that the information being relied upon is up-to-date.

AHNJ' s products are not to be used in any life support devices or systems (including but not limited to the listed devices or systems), in which a failure can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Nanjing AH Electronic Science & Technology Co., assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Learn more about our products for your application, please contact us:

nianrong@ahest.com