

1 Features and Benefits

- Zero speed detection
- 10 bit A/D converter in the chip
- Internal short circuit protection
- No chopping delay
- Self-adaptive to magnetic field change
- ▲ Operating temperature range -40°C ~ 125°C
- ▲ Developed according to EU RoHs & REACH

2 Application Examples

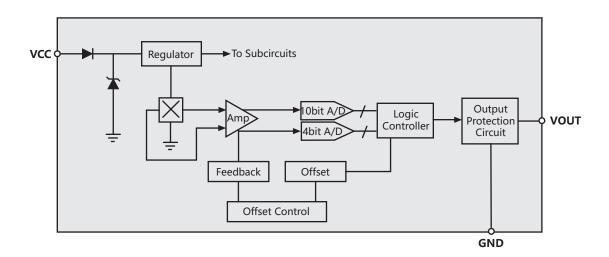
- Geartooth Sensor
- Speed Sensor
- Camshaft Sensor
- Direction Detection

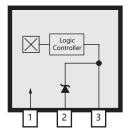
3 Selection Guide

Part Number	Packing	Mounting	Operating, To	B _H
AH3194	Anti-static bag, 1000 pieces/bag	3-pin SIP through hole	–40°C ∼ 125°C	25.0mT

NOTE 1. Hall ICs are soldered tin brazing for assembly.

2. A risk of circuit failure may happen in non-brazing processes such as electric resistance welding, high-frequency welding, etc.


3. E: -40~85°C; K: -40~125°C; L: -40~150°C.


4 General Description

AH3194 is a gear speed sensor with self-adaptive adjustment and digital output function. It's a kind of special automotive gear sensor, but also be suitable for ordinary speed measurement applications. Only one piece Hall element inside the sensor, so no problem of the rotation alignment exists. In addition, it has a 10 bit A/D converter and the logic controller, and another independent 4 bit A/D converter inside it. After two A/D respectively sample and comparison operate to Hall element signals, it can achieve the gear tooth identification. When it works, it needs to put S pole of the magnet to face the back of the product, and magnetic field strength range can from 50mT to 500mT.

5 Terminal List

TO-92UA

Name	Description	Number
VCC	Power Supply	1
GND	Ground	2
VOUT	Output	3

6 Absolute Maximum Ratings

Characteristic	Symbol	Note	Rating	Unit
Supply Voltage	Vcc		28	V
Output Off-state Voltage	Vo (off)		28	V
Output Current	lo		5	mA
Magnetic Flux Density	В		Unlimited	mT
Operating Temperature	То	К	-40 ~ 125	°C
Maximum Junction Temperature	T _{J(max)}	Too high a Tj could lead to electrical or thermal breakdown	165	°C
Storage Temperature	Tstg		-50 ~ 160	°C
ESD sensitivity – HBM	-		6	kV

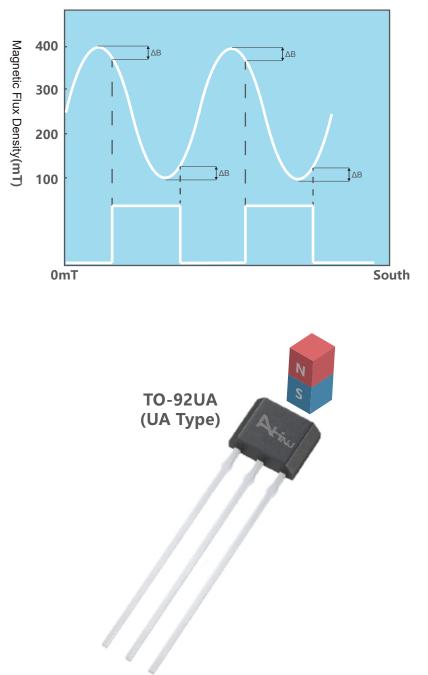
NOTE 1. Human Body Model according to AEC-Q100-002 standard.

7 Electrical Operating Characteristics

valid through the full operating temperature range; unless otherwise specified

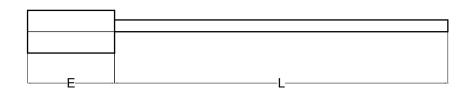
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	Vcc	Operating, TJ<165⁰C	3.5	-	24	V
Low-level Output Voltage	Vol	Vcc1 = 4.5V, Io=25mA	-	0.2	0.6	V
Supply Current	lcc	Vcc1=4.5V~24V	-	2	6	mA
Output Short Circuit Current	Ifault	Output stage short circuit failure occurs	-	50	150	mA
Output Leakage Current	OUTOFF	Vcc2=24V, Vcc1 open circuit	-	0.1	10	μA
Clock Frequency	Fclk	Normal operation	-	300	800	kHz
Output-Rise Time	t _R	$V_{CC1}=V_{CC2}=12V$, $R_L=1k\Omega$, $C_L=10pF$	-	-	0.4	μs
Output-Fall Time	t⊧	Vcc1=Vcc2=12V, RL=1kΩ, CL=10pF	-	-	0.4	μs
Output Short Circuit Close Time	Tfault	Output stage short circuit failure occurs	-	100	200	μs
Bandwidth	BW	Normal operation	-	-	15	kHz

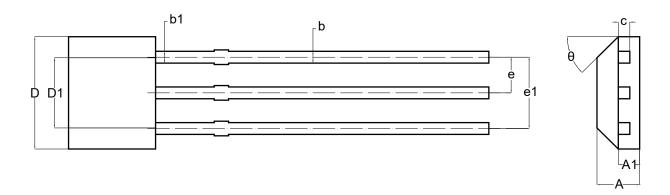
8 Magnetic Operating Characteristics


valid through the full operating temperature range; unless otherwise specified. Test Condition: Vcc1 = Vcc2 = 24V, Io = 20mA

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Reverse Biased Range	Bbias	-	-30	-	400	mT
Linear Area	Lin	-	50	500	-	mT
Hysteresis	Вн	Iout=20mA, B > BOP	1.8	3.5	5.0	mT

10 Magnetic Behavior


The sensor is designed for sensing the changes of the magnetic field, so after the magnetic strength changes and reaches a certain value, the sensor will change the output state. After the outer magnetic strength reaches maximum value and then begins to decrease, when the increment absolute value ΔB is above 100Gs, the output state changes from low level to high level; when the external magnetic strength reaches minimum value and then begins to increase, when the increase, when the increment absolute value ΔB is above 100Gs, the output state changes from low level to high level; when the external magnetic strength reaches minimum value and then begins to increase, when the increment absolute value ΔB is above 100Gs, the output state changes from high level to low level.



11 Package Information

TO-92UA

Symbol	Dimension (Unit: mm)			
	Min	Max		
А	1.420	1.620		
A1	0.660	0.860		
b	0.330	0.480		
b1	0.400	0.510		
С	0.330	0.510		
D	3.900	4.100		
D1	2.280	2.680		
E	3.050	3.250		
е	1.270TYP.			
e1	2.440	2.640		
L	14.350	14.750		
θ	45°TYP.			

Copyright 2003~2020 Nanjing AH Electronic Science & Technology Co., Ltd.

Nanjing AH Electronic Science & Technology Co., reserves the right to improve the performance, reliability or manufacturability of its products at any time according to detailed specifications. Before placing an order, the user is cautioned to verify that the information being relied upon is up-to-date.

AHNJ' s products are not to be used in any life support devices or systems (including but not limited to the listed devices or systems), in which a failure can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Nanjing AH Electronic Science & Technology Co., assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Learn more about our products for your application, please contact us:

nianrong@ahest.com